Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Axioms ; 11(8):400, 2022.
Article in English | MDPI | ID: covidwho-1987637

ABSTRACT

We analyze mathematical models for COVID-19 with discrete time delays and vaccination. Sufficient conditions for the local stability of the endemic and disease-free equilibrium points are proved for any positive time delay. The stability results are illustrated through numerical simulations performed in MATLAB.

2.
Mathematical Analysis of Infectious Diseases ; : 27-39, 2022.
Article in English | EuropePMC | ID: covidwho-1898364

ABSTRACT

We develop a mathematical model for transferring the vaccine BNT162b2 based on the heat diffusion equation. Then, we apply optimal control theory to the proposed generalized SEIR model. We introduce vaccination for the susceptible population to control the spread of the COVID-19 epidemic. For this, we use the Pontryagin minimum principle to find the necessary optimality conditions for the optimal control. The optimal control problem and the heat diffusion equation are solved numerically. Finally, several simulations are done to study and predict the spread of the COVID-19 epidemic in Italy. In particular, we compare the model in the presence and absence of vaccination.

3.
Axioms ; 11(4):170, 2022.
Article in English | MDPI | ID: covidwho-1785507

ABSTRACT

A fractional-order compartmental model was recently used to describe real data of the first wave of the COVID-19 pandemic in Portugal [Chaos Solitons Fractals 144 (2021), Art. 110652]. Here, we modify that model in order to correct time dimensions and use it to investigate the third wave of COVID-19 that occurred in Portugal from December 2020 to February 2021, and that has surpassed all previous waves, both in number and consequences. A new fractional optimal control problem is then formulated and solved, with vaccination and preventive measures as controls. A cost-effectiveness analysis is carried out, and the obtained results are discussed.

4.
Axioms ; 10(4):314, 2021.
Article in English | MDPI | ID: covidwho-1542407

ABSTRACT

Recently, a continuous-time compartmental mathematical model for the spread of the Coronavirus disease 2019 (COVID-19) was presented with Portugal as case study, from 2 March to 4 May 2020, and the local stability of the Disease Free Equilibrium (DFE) was analysed. Here, we propose an analogous discrete-time model and, using a suitable Lyapunov function, we prove the global stability of the DFE point. Using COVID-19 real data, we show, through numerical simulations, the consistence of the obtained theoretical results.

5.
Axioms ; 10(4):290, 2021.
Article in English | MDPI | ID: covidwho-1488475

ABSTRACT

In this research, we provide a mathematical analysis for the novel coronavirus responsible for COVID-19, which continues to be a big source of threat for humanity. Our fractional-order analysis is carried out using a non-singular kernel type operator known as the Atangana-Baleanu-Caputo (ABC) derivative. We parametrize the model adopting available information of the disease from Pakistan in the period 9 April to 2 June 2020. We obtain the required solution with the help of a hybrid method, which is a combination of the decomposition method and the Laplace transform. Furthermore, a sensitivity analysis is carried out to evaluate the parameters that are more sensitive to the basic reproduction number of the model. Our results are compared with the real data of Pakistan and numerical plots are presented at various fractional orders.

6.
Axioms ; 10(3):135, 2021.
Article in English | MDPI | ID: covidwho-1288799

ABSTRACT

We propose a qualitative analysis of a recent fractional-order COVID-19 model. We start by showing that the model is mathematically and biologically well posed. Then, we give a proof on the global stability of the disease free equilibrium point. Finally, some numerical simulations are performed to ensure stability and convergence of the disease free equilibrium point.

7.
J Math Anal Appl ; 514(2): 125171, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-1144828

ABSTRACT

We propose a mathematical model for the transmission dynamics of SARS-CoV-2 in a homogeneously mixing non constant population, and generalize it to a model where the parameters are given by piecewise constant functions. This allows us to model the human behavior and the impact of public health policies on the dynamics of the curve of active infected individuals during a COVID-19 epidemic outbreak. After proving the existence and global asymptotic stability of the disease-free and endemic equilibrium points of the model with constant parameters, we consider a family of Cauchy problems, with piecewise constant parameters, and prove the existence of pseudo-oscillations between a neighborhood of the disease-free equilibrium and a neighborhood of the endemic equilibrium, in a biologically feasible region. In the context of the COVID-19 pandemic, this pseudo-periodic solutions are related to the emergence of epidemic waves. Then, to capture the impact of mobility in the dynamics of COVID-19 epidemics, we propose a complex network with six distinct regions based on COVID-19 real data from Portugal. We perform numerical simulations for the complex network model, where the objective is to determine a topology that minimizes the level of active infected individuals and the existence of topologies that are likely to worsen the level of infection. We claim that this methodology is a tool with enormous potential in the current pandemic context, and can be applied in the management of outbreaks (in regional terms) but also to manage the opening/closing of borders.

8.
Alexandria Engineering Journal ; 2021.
Article in English | ScienceDirect | ID: covidwho-1086731

ABSTRACT

We investigate, through a fractional mathematical model, the effects of physical distance on the SARS-CoV-2 virus transmission. Two controls are considered in our model for eradication of the spread of COVID-19: media education, through campaigns explaining the importance of social distancing, use of face masks, etc., towards all population, while the second one is quarantine social isolation of the exposed individuals. A general fractional order optimal control problem, and associated optimality conditions of Pontryagin type, are discussed, with the goal to minimize the number of susceptible and infected while maximizing the number of recovered. The extremals are then numerically obtained.

9.
Sci Rep ; 11(1): 3451, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1078604

ABSTRACT

The COVID-19 pandemic has forced policy makers to decree urgent confinements to stop a rapid and massive contagion. However, after that stage, societies are being forced to find an equilibrium between the need to reduce contagion rates and the need to reopen their economies. The experience hitherto lived has provided data on the evolution of the pandemic, in particular the population dynamics as a result of the public health measures enacted. This allows the formulation of forecasting mathematical models to anticipate the consequences of political decisions. Here we propose a model to do so and apply it to the case of Portugal. With a mathematical deterministic model, described by a system of ordinary differential equations, we fit the real evolution of COVID-19 in this country. After identification of the population readiness to follow social restrictions, by analyzing the social media, we incorporate this effect in a version of the model that allow us to check different scenarios. This is realized by considering a Monte Carlo discrete version of the previous model coupled via a complex network. Then, we apply optimal control theory to maximize the number of people returning to "normal life" and minimizing the number of active infected individuals with minimal economical costs while warranting a low level of hospitalizations. This work allows testing various scenarios of pandemic management (closure of sectors of the economy, partial/total compliance with protection measures by citizens, number of beds in intensive care units, etc.), ensuring the responsiveness of the health system, thus being a public health decision support tool.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control , Models, Theoretical , Forecasting , Humans , Monte Carlo Method , Pandemics/prevention & control , Portugal
10.
Axioms ; 10(1):18, 2021.
Article in English | MDPI | ID: covidwho-1069788

ABSTRACT

The novel coronavirus disease (COVID-19) pneumonia has posed a great threat to the world recent months by causing many deaths and enormous economic damage worldwide. The first case of COVID-19 in Morocco was reported on 2 March 2020, and the number of reported cases has increased day by day. In this work, we extend the well-known SIR compartmental model to deterministic and stochastic time-delayed models in order to predict the epidemiological trend of COVID-19 in Morocco and to assess the potential role of multiple preventive measures and strategies imposed by Moroccan authorities. The main features of the work include the well-posedness of the models and conditions under which the COVID-19 may become extinct or persist in the population. Parameter values have been estimated from real data and numerical simulations are presented for forecasting the COVID-19 spreading as well as verification of theoretical results.

11.
Chaos Solitons Fractals ; 141: 110311, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023496

ABSTRACT

We correct some numerical results of [Chaos Solitons Fractals 135 (2020), 109846], by providing the correct numbers and plots. The conclusions of the paper remain, however, the same. In particular, the numerical simulations show the suitability of the proposed COVID-19 model for the outbreak that occurred in Wuhan, China. This time all our computer codes are provided, in order to make all computations reproducible. The authors would like to apologize for any inconvenience caused.

12.
Chaos Solitons Fractals ; 144: 110652, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1014398

ABSTRACT

A fractional compartmental mathematical model for the spread of the COVID-19 disease is proposed. Special focus has been done on the transmissibility of super-spreaders individuals. Numerical simulations are shown for data of Galicia, Spain, and Portugal. For each region, the order of the Caputo derivative takes a different value, that is not close to one, showing the relevance of considering fractional models.

13.
Ecological Complexity ; : 100885, 2020.
Article in English | ScienceDirect | ID: covidwho-933031

ABSTRACT

We propose a compartmental mathematical model for the spread of the COVID-19 disease, showing its usefulness with respect to the pandemic in Portugal, from the first recorded case in the country till the end of the three states of emergency. New results include the compartmental model, described by a system of seven ordinary differential equations;proof of positivity and boundedness of solutions;investigation of equilibrium points and their stability analysis;computation of the basic reproduction number;and numerical simulations with official real data from the Portuguese health authorities. Besides completely new, the proposed model allows to describe quite well the spread of COVID-19 in Portugal, fitting simultaneously not only the number of active infected individuals but also the number of hospitalized individuals, respectively with a L2 error of 9.2152e−04 and 1.6136e−04 with respect to the initial population. Such results are very important, from a practical point of view, and far from trivial from a mathematical perspective. Moreover, the obtained value for the basic reproduction number is in agreement with the one given by the Portuguese authorities at the end of the emergency states.

14.
Chaos Solitons Fractals ; 135: 109846, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-125386

ABSTRACT

We propose a compartmental mathematical model for the spread of the COVID-19 disease with special focus on the transmissibility of super-spreaders individuals. We compute the basic reproduction number threshold, we study the local stability of the disease free equilibrium in terms of the basic reproduction number, and we investigate the sensitivity of the model with respect to the variation of each one of its parameters. Numerical simulations show the suitability of the proposed COVID-19 model for the outbreak that occurred in Wuhan, China.

SELECTION OF CITATIONS
SEARCH DETAIL